Netty5源码分析--1.服务端启动过程详解
实例
样例代码来自于io.netty.example.telnet.TelnetServer
,完整样例请参考NettyExample工程。
public class TelnetServer {
private final int port;
public TelnetServer(int port) {
this.port = port;
}
public void run() throws Exception {
EventLoopGroup bossGroup = new NioEventLoopGroup();//bossGroup线程池用来接受客户端的连接请求
EventLoopGroup workerGroup = new NioEventLoopGroup();//workerGroup线程池用来处理boss线程池里面的连接的数据
try {
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.childHandler(new TelnetServerInitializer());//ChannelInitializer是一个特殊的handler,用来初始化ChannelPipeline里面的handler链。 这个特殊的ChannelInitializer在加入到pipeline后,在initChannel调用结束后,自身会被remove掉,从而完成初始化的效果(后文会详述)。
//AbstractBootstrap.option()用来设置ServerSocket的参数,AbstractBootstrap.childOption()用来设置Socket的参数。
b.bind(port).sync().channel().closeFuture().sync();
} finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
public static void main(String[] args) throws Exception {
int port;
if (args.length > 0) {
port = Integer.parseInt(args[0]);
} else {
port = 8080;
}
new TelnetServer(port).run();
}
}
针对上述代码,还需要补充介绍一些内容:
在调用ctx.write(Object)后需要调用ctx.flush()方法,这样才能将数据发出去。或者直接调用 ctx.writeAndFlush(msg)方法。
通常使用这种方式来实例化ByteBuf:final ByteBuf time = ctx.alloc().buffer(4);
,而不是直接使用ByteBuf子类的构造方法
另外,还需要在处理基于流的传输协议TCP/IP的数据时,注意报文和业务程序实际能够接收到的数据之间的关系。 假如你发送了2个报文,底层是发送了两组字节。但是操作系统的TCP栈是有缓存的,它可能把这两组字节合并成一组字节,然后再给业务程序使用。但是业务程序往往需要根据把这一组字节还原成原来的两组字节,但是不幸的是,业务程序往往无法直接还原,除非在报文上做了些特殊的约定。比如报文是定长的或者有明确的分隔符。
服务端启动服务
当`TelnetServer启动时,依次完成如下步骤:
NioEventLoopGroup初始化
当NioEventLoopGroup
构造方法被调用时,首先初始化父类MultithreadEventLoopGroup
,触发父类获得默认的线程数,其值默认是Runtime.getRuntime().availableProcessors() * 2
static {
DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
"io.netty.eventLoopThreads", Runtime.getRuntime().availableProcessors() * 2));
if (logger.isDebugEnabled()) {
logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
}
}
接着调用NioEventLoopGroup
自身的构造器,依次执行下面的构造器。
public NioEventLoopGroup() {
this(0);
}
public NioEventLoopGroup(int nThreads, Executor executor) {
this(nThreads, executor, SelectorProvider.provider());
}
public NioEventLoopGroup(int nThreads) {
this(nThreads, (Executor) null);
}
public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {
this(nThreads, threadFactory, SelectorProvider.provider());
}
public NioEventLoopGroup(
int nThreads, ThreadFactory threadFactory, final SelectorProvider selectorProvider) {
super(nThreads, threadFactory, selectorProvider);
}
继续调用父类MultithreadEventLoopGroup的构造器,该构造器又调用了父类构造器。
protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {
super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);
}
下面的构造方法主要完成以下几件事情:
- 设置默认DefaultThreadFactory线程工厂,主要做了2件事,设置线程池名称和线程名称
初始化children数组,然后通过调用
NioEventLoopGroup.newChild
方法完成child属性设置。protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) { if (nThreads <= 0) { throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads)); } if (executor == null) { executor = new ThreadPerTaskExecutor(newDefaultThreadFactory()); } children = new EventExecutor[nThreads]; for (int i = 0; i < nThreads; i ++) { boolean success = false; try { children[i] = newChild(executor, args);//tag success = true; } catch (Exception e) { // TODO: Think about if this is a good exception type throw new IllegalStateException("failed to create a child event loop", e); } finally { if (!success) { for (int j = 0; j < i; j ++) { children[j].shutdownGracefully(); } for (int j = 0; j < i; j ++) { EventExecutor e = children[j]; try { while (!e.isTerminated()) { e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS); } } catch (InterruptedException interrupted) { Thread.currentThread().interrupt(); break; } } } } }
在newChild方法中,主要完成构建NioEventLoop实例
@Override protected EventLoop newChild(Executor executor, Object... args) throws Exception { return new NioEventLoop(this, executor, (SelectorProvider) args[0]); }
下面的
super(parent, executor, false);
主要是设置NioEventLoopGroup是NioEventLoop的parent。然后调用openSelector()
创建Selector对象。NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider) { super(parent, executor, false); if (selectorProvider == null) { throw new NullPointerException("selectorProvider"); } provider = selectorProvider; selector = openSelector(); }
首先,先初始化Selector对象,然后再初始化SelectedSelectionKeySet
,设置其属性keysA = new SelectionKey[1024]; keysB = keysA.clone();
。进行了一个优化,设置了sun.nio.ch.SelectorImpl
的selectedKeys
和publicSelectedKeys
属性。根据NioEventLoop.run()方法内部直接调用 processSelectedKeysOptimized(selectedKeys.flip());
并且没有直接使用selector.selectedKeys()
这两处代码,笔者猜测正是因为在此时通过反射设置了属性,所以NioEventLoop.run()才能正常工作。
private Selector NioEventLoop.openSelector() {
final Selector selector;
try {
selector = provider.openSelector();
} catch (IOException e) {
throw new ChannelException("failed to open a new selector", e);
}
if (DISABLE_KEYSET_OPTIMIZATION) {
return selector;
}
try {
SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet();
Class<?> selectorImplClass =
Class.forName("sun.nio.ch.SelectorImpl", false, ClassLoader.getSystemClassLoader());
// Ensure the current selector implementation is what we can instrument.
if (!selectorImplClass.isAssignableFrom(selector.getClass())) {
return selector;
}
Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys");
Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");
selectedKeysField.setAccessible(true);
publicSelectedKeysField.setAccessible(true);
selectedKeysField.set(selector, selectedKeySet);
publicSelectedKeysField.set(selector, selectedKeySet);
selectedKeys = selectedKeySet;
logger.trace("Instrumented an optimized java.util.Set into: {}", selector);
} catch (Throwable t) {
selectedKeys = null;
logger.trace("Failed to instrument an optimized java.util.Set into: {}", selector, t);
}
return selector;
}
最后循环完成children数组的初始化children[i] = newChild(executor, args);
,进而完成NioEventLoopGroup
对象初始化。
小结
此时再结合Eclipse的DEBUG视图,观察bossGroup的属性,可以基本看到完成如下几个事情
- 创建NioEventLoopGroup对象
- 获得默认线程池数目大小,数值为N
- 设置线程池名称和线程名称
- 循环创建出来 N个NioEventLoop对象,每个NioEventLoop都设置了相同的parent,executor和不同的selector实例。
ServerBootstrap 初始化
ServerBootstrap b = new ServerBootstrap();
上面这段代码内涵平平,主要设置group属性是bossGroup,childGroup属性是workerGroup。 没啥其他复杂属性赋值。主要值得一提的就是channel方法的设计,通过传递class对象,然后通过反射来实例化具体的Channel实例。
b
.bind(port)
.sync()
.channel()
.closeFuture()
.sync();
,这个方法的内容很多,详见下述分析。
b.bind(port)方法会调用下面的doBind方法,在doBind方法中会完成Channel的初始化和绑定端口。有2个方法需要tag,分别是 tag1 和 tag2
private ChannelFuture doBind(final SocketAddress localAddress) {
final ChannelFuture regFuture = initAndRegister();//tag1
final Channel channel = regFuture.channel();
if (regFuture.cause() != null) {
return regFuture;
}
final ChannelPromise promise;
if (regFuture.isDone()) {
promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);//tag2
} else {
// Registration future is almost always fulfilled already, but just in case it's not.
promise = new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE);
regFuture.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
doBind0(regFuture, channel, localAddress, promise);
}
});
}
return promise;
}
tag1 initAndRegister,里面完成Channel实例创建,实例化和注册channel到selector上。
final ChannelFuture initAndRegister() {
Channel channel;
try {
channel = createChannel();//tag1.1
} catch (Throwable t) {
return VoidChannel.INSTANCE.newFailedFuture(t);
}
try {
init(channel);//tag1.2
} catch (Throwable t) {
channel.unsafe().closeForcibly();
return channel.newFailedFuture(t);
}
ChannelPromise regFuture = channel.newPromise();
channel.unsafe().register(regFuture);//tag1.3
if (regFuture.cause() != null) {
if (channel.isRegistered()) {
channel.close();
} else {
channel.unsafe().closeForcibly();
}
}
tag1.1,调用ServerBootstrap.createChannel() ,通过反射完成Channel实例创建。这里使用了childGroup这个属性,即workGroup线程池。
@Override
Channel createChannel() {
EventLoop eventLoop = group().next();
return channelFactory().newChannel(eventLoop, childGroup);//tag1.1.1
}
tag1.1.1,此时将断点打到NioServerSocketChannel的构造方法上
public NioServerSocketChannel(EventLoop eventLoop, EventLoopGroup childGroup) {
super(null, eventLoop, childGroup, newSocket(), SelectionKey.OP_ACCEPT);//tag1.1.1.1
config = new DefaultServerSocketChannelConfig(this, javaChannel().socket());//tag1.1.1.2
}
tag1.1.1.1,这段代码主要完成3件事。
第一个是在NioServerSocketChannel.newSocket()
调用了ServerSocketChannel.open()
,完成了javaChannel的创建
private static ServerSocketChannel newSocket() {
try {
return ServerSocketChannel.open();
} catch (IOException e) {
throw new ChannelException(
"Failed to open a server socket.", e);
}
}
第二个是在AbstractNioChannel
的构造方法中调用了ch.configureBlocking(false)
方法
protected AbstractNioChannel(Channel parent, EventLoop eventLoop, SelectableChannel ch, int readInterestOp) {
super(parent, eventLoop);//tag1.1.1.1.1
this.ch = ch;
this.readInterestOp = readInterestOp;
try {
ch.configureBlocking(false);
} catch (IOException e) {
try {
ch.close();
} catch (IOException e2) {
if (logger.isWarnEnabled()) {
logger.warn(
"Failed to close a partially initialized socket.", e2);
}
}
throw new ChannelException("Failed to enter non-blocking mode.", e);
}
}
tag1.1.1.1.1中,在AbstractChannel(Channel parent, EventLoop eventLoop)
中,进行了两个重要操作:unsafe = newUnsafe();pipeline = new DefaultChannelPipeline(this);
。
protected AbstractChannel(Channel parent, EventLoop eventLoop) {
this.parent = parent;
this.eventLoop = validate(eventLoop);
unsafe = newUnsafe();
pipeline = new DefaultChannelPipeline(this);//tag1.1.1.1.1.1
}
tag1.1.1.1.1.1,设置了HeadHandler和TailHandler。这两个类也比较重要。
public DefaultChannelPipeline(AbstractChannel channel) { if (channel == null) { throw new NullPointerException("channel"); } this.channel = channel;
TailHandler tailHandler = new TailHandler();
tail = new DefaultChannelHandlerContext(this, null, generateName(tailHandler), tailHandler);//tag1.1.1.1.1.1.1
HeadHandler headHandler = new HeadHandler(channel.unsafe());
head = new DefaultChannelHandlerContext(this, null, generateName(headHandler), headHandler);
head.next = tail;
tail.prev = head;
}
tag1.1.1.1.1.1.1,这个方法完成了DefaultChannelHandlerContext的对象的初始化。这个类也是核心类,先暂时把它当成个黑盒,会在后面重点分析。
此时,我们方法调用栈结束,然后回到 tag1.1.1.2 这段代码上来。 在DefaultServerSocketChannelConfig
中构造方法中完成了channel的参数设置
至此,才完成tag1.1 AbstractBootstrap.createChannel()方法的执行。现在又开始 tag1.2的代码片段。该 AbstractBootstrap.init(Channel channel) 方法里面主要涉及到Parent Channel 和 Child Channel的option和attribute 设置,并将客户端设置的参数覆盖到默认参数中;最后,还将childHandler(new TelnetServerInitializer())
中设置的handler加入到pipeline()中。代码见下。
void init(Channel channel) throws Exception { final Map<ChannelOption<?>, Object> options = options(); synchronized (options) { channel.config().setOptions(options); }
final Map<AttributeKey<?>, Object> attrs = attrs();
synchronized (attrs) {
for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
@SuppressWarnings("unchecked")
AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
channel.attr(key).set(e.getValue());
}
}
ChannelPipeline p = channel.pipeline();
if (handler() != null) {
p.addLast(handler());
}
final ChannelHandler currentChildHandler = childHandler;
final Entry<ChannelOption<?>, Object>[] currentChildOptions;
final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
synchronized (childOptions) {
currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size()));
}
synchronized (childAttrs) {
currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size()));
}
p.addLast(new ChannelInitializer<Channel>() {//tag1.2.1
@Override
public void initChannel(Channel ch) throws Exception {
ch.pipeline().addLast(new ServerBootstrapAcceptor(currentChildHandler, currentChildOptions,
currentChildAttrs));
}
});
}
tag1.2.1中,此时pipeline中又多了一个handler:内部类ServerBootstrap$1,此时数组的链表情况如下:HeadHandler,ServerBootstrap$1和TailHandler。另外,再额外吐槽一句,p.addLast
方法并不是把ServerBootstrap$1放到tail上,而是放到tail的前一个节点上。所以,这个addLast方法命名很是误解。
至此完成tag1.2执行,开始执行tag1.3 channel.unsafe().register(regFuture);
这段代码。该方法内部接着执行执行tag1.3.1的代码。
public final void register(final ChannelPromise promise) {
if (eventLoop.inEventLoop()) {
register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {//tag1.3.1
register0(promise);
}
});
} catch (Throwable t) {
logger.warn(
"Force-closing a channel whose registration task was not accepted by an event loop: {}",
AbstractChannel.this, t);
closeForcibly();
closeFuture.setClosed();
promise.setFailure(t);
}
}
}
tag1.3.1,该片段主要执行doRegister();
和pipeline.fireChannelRegistered();//tag1.3.1.2
private void register0(ChannelPromise promise) {
try {
// check if the channel is still open as it could be closed in the mean time when the register
// call was outside of the eventLoop
if (!ensureOpen(promise)) {
return;
}
doRegister();//tag1.3.1.1
registered = true;
promise.setSuccess();
pipeline.fireChannelRegistered();//tag1.3.1.2
if (isActive()) {
pipeline.fireChannelActive();
}
} catch (Throwable t) {
// Close the channel directly to avoid FD leak.
closeForcibly();
closeFuture.setClosed();
if (!promise.tryFailure(t)) {
logger.warn(
"Tried to fail the registration promise, but it is complete already. " +
"Swallowing the cause of the registration failure:", t);
}
}
}
tag1.3.1.1 将代码片段将javachannel注册到selector上,并把selectionKey属性赋值
protected void AbstractNioChannel.doRegister() throws Exception {
boolean selected = false;
for (;;) {
try {
selectionKey = javaChannel().register(eventLoop().selector, 0, this);
return;
} catch (CancelledKeyException e) {
if (!selected) {
// Force the Selector to select now as the "canceled" SelectionKey may still be
// cached and not removed because no Select.select(..) operation was called yet.
eventLoop().selectNow();
selected = true;
} else {
// We forced a select operation on the selector before but the SelectionKey is still cached
// for whatever reason. JDK bug ?
throw e;
}
}
}
}
tag1.3.1.2,这个方法里面有一堆事情要讲。先暂且放下,在后文讲到ChannelPipeline时会再次回来看这段代码。
public ChannelPipeline DefaultChannelPipeline.fireChannelRegistered() { head.fireChannelRegistered(); return this; }
此时终于完成 tag1 代码片段执行,开始执行 tag2 的代码片段。
private static void doBind0( final ChannelFuture regFuture, final Channel channel, final SocketAddress localAddress, final ChannelPromise promise) {
// This method is invoked before channelRegistered() is triggered. Give user handlers a chance to set up
// the pipeline in its channelRegistered() implementation.
channel.eventLoop().execute(new Runnable() {
@Override
public void run() {
if (regFuture.isSuccess()) {
channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);//tag2.1
} else {
promise.setFailure(regFuture.cause());
}
}
});
}
tag2.1,该方法内部有调用了pipeline的方法了(在tag1.3.1.2 中也出现了pipeline调用)。 好吧,是时候介绍pipeline了。
public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) { return pipeline.bind(localAddress, promise);//tag2.1.1 }
ChannelPipeline
DefaultChannelPipeline
是ChannelPipeline
的实现类,DefaultChannelPipeline
内部维护了两个指针:final DefaultChannelHandlerContext head; final DefaultChannelHandlerContext tail;
,分别指向链表的头部和尾部;而DefaultChannelHandlerContext
内部是一个链表结构:volatile DefaultChannelHandlerContext next;volatile DefaultChannelHandlerContext prev;
,而每个DefaultChannelHandlerContext
与ChannelHandler
实例一一对应。
从上面可以看到,这是个经典的Intercepting Filter模式实现。下面我们再接着从tag1.3.1.2代码看起,pipeline.fireChannelRegistered();
依次执行如下两个方法。上文也已经说明,此时handler链是HeadHandler,ServerBootstrap$1和TailHandler。
@Override
public ChannelPipeline DefaultChannelPipeline.fireChannelRegistered() {
head.fireChannelRegistered();
return this;
}
public ChannelHandlerContext ChannelHandlerContext.fireChannelRegistered() {
DefaultChannelHandlerContext next = findContextInbound(MASK_CHANNEL_REGISTERED); //tag 1.3.1.2.1
next.invoker.invokeChannelRegistered(next); //tag1.3.1.2.2
return this;
}
private DefaultChannelHandlerContext DefaultChannelHandlerContext.findContextInbound(int mask) {
DefaultChannelHandlerContext ctx = this;
do {
ctx = ctx.next;
} while ((ctx.skipFlags & mask) != 0);
return ctx;
}
tag 1.3.1.2.1,针对这个findContextInbound方法需要再补充下,里面ServerBootstrap$1是继承自ChannelInitializer,而ChannelInitializer.channelRegistered
是没有@Skip注解的。呃,@Skip注解又有何用。这个要结合DefaultChannelHandlerContext.skipFlags0(Class<? extends ChannelHandler> handlerType)
。这个skipFlags0方法返回一个整数,如果该方法上标记了@Skip注解,那么表示该方法在Handler被执行时,需要被忽略。所以,此时do {ctx = ctx.next;} while ((ctx.skipFlags & mask) != 0);
片段的执行结果返回的是ServerBootstrap$1这个Handler。
这里在额外说一句,这个ChannelHandlerAdapter
里面的方法几乎都被加了@Skip标签。
private static int skipFlags0(Class<? extends ChannelHandler> handlerType) {
int flags = 0;
try {
if (handlerType.getMethod(
"handlerAdded", ChannelHandlerContext.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_HANDLER_ADDED;
}
if (handlerType.getMethod(
"handlerRemoved", ChannelHandlerContext.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_HANDLER_REMOVED;
}
if (handlerType.getMethod(
"exceptionCaught", ChannelHandlerContext.class, Throwable.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_EXCEPTION_CAUGHT;
}
if (handlerType.getMethod(
"channelRegistered", ChannelHandlerContext.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_CHANNEL_REGISTERED;
}
if (handlerType.getMethod(
"channelActive", ChannelHandlerContext.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_CHANNEL_ACTIVE;
}
if (handlerType.getMethod(
"channelInactive", ChannelHandlerContext.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_CHANNEL_INACTIVE;
}
if (handlerType.getMethod(
"channelRead", ChannelHandlerContext.class, Object.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_CHANNEL_READ;
}
if (handlerType.getMethod(
"channelReadComplete", ChannelHandlerContext.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_CHANNEL_READ_COMPLETE;
}
if (handlerType.getMethod(
"channelWritabilityChanged", ChannelHandlerContext.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_CHANNEL_WRITABILITY_CHANGED;
}
if (handlerType.getMethod(
"userEventTriggered", ChannelHandlerContext.class, Object.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_USER_EVENT_TRIGGERED;
}
if (handlerType.getMethod(
"bind", ChannelHandlerContext.class,
SocketAddress.class, ChannelPromise.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_BIND;
}
if (handlerType.getMethod(
"connect", ChannelHandlerContext.class, SocketAddress.class, SocketAddress.class,
ChannelPromise.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_CONNECT;
}
if (handlerType.getMethod(
"disconnect", ChannelHandlerContext.class, ChannelPromise.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_DISCONNECT;
}
if (handlerType.getMethod(
"close", ChannelHandlerContext.class, ChannelPromise.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_CLOSE;
}
if (handlerType.getMethod(
"read", ChannelHandlerContext.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_READ;
}
if (handlerType.getMethod(
"write", ChannelHandlerContext.class,
Object.class, ChannelPromise.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_WRITE;
// flush() is skipped only when write() is also skipped to avoid the situation where
// flush() is handled by the event loop before write() in staged execution.
if (handlerType.getMethod(
"flush", ChannelHandlerContext.class).isAnnotationPresent(Skip.class)) {
flags |= MASK_FLUSH;
}
}
} catch (Exception e) {
// Should never reach here.
PlatformDependent.throwException(e);
}
return flags;
}
此时,tag1.3.1.2.1 代码片段执行完毕,现在开始tag1.3.1.2.2 执行。
@Override
public void DefaultChannelHandlerInvoker.invokeChannelRegistered(final ChannelHandlerContext ctx) {
if (executor.inEventLoop()) {
invokeChannelRegisteredNow(ctx);
} else {
executor.execute(new Runnable() {
@Override
public void run() {
invokeChannelRegisteredNow(ctx);
}
});
}
}
public static void invokeChannelRegisteredNow(ChannelHandlerContext ctx) {
try {
ctx.handler().channelRegistered(ctx);
} catch (Throwable t) {
notifyHandlerException(ctx, t);
}
}
由于ServerBootstrap$1(ChannelInitializer<C>)这个类继承了ChannelInitializer,所以会执行了ChannelInitializer.channelRegistered这个方法。
@Override
@SuppressWarnings("unchecked")
public final void ChannelInitializer.channelRegistered(ChannelHandlerContext ctx) throws Exception {
ChannelPipeline pipeline = ctx.pipeline();
boolean success = false;
try {
initChannel((C) ctx.channel());//tag1.3.1.2.2.1
pipeline.remove(this);//tag1.3.1.2.2.2
ctx.fireChannelRegistered();//tag1.3.1.2.2.3
success = true;
} catch (Throwable t) {
logger.warn("Failed to initialize a channel. Closing: " + ctx.channel(), t);
} finally {
if (pipeline.context(this) != null) {
pipeline.remove(this);
}
if (!success) {
ctx.close();
}
}
}
在tag1.3.1.2.2.1里,又回调了下面的initChannel方法。该方法把ServerBootstrapAcceptor这个Handler加入到Pipeline中;此时handler链情况如下:HeadHandler,ServerBootstrap$1,ServerBootstrap$ServerBootstrapAcceptor和TailHandler
p.addLast(new ChannelInitializer<Channel>() {
@Override
public void initChannel(Channel ch) throws Exception {
ch.pipeline().addLast(new ServerBootstrapAcceptor(currentChildHandler, currentChildOptions,
currentChildAttrs));
}
});
在 tag1.3.1.2.2.2里,通过执行pipeline.remove(this);
又把ServerBootstrap$1这个Handler给删除了,从而完成初始化的效果。需要提醒的是,ServerBootstrapAcceptor的currentChildHandler属性包含了在客户端代码注册的TelnetServerInitializer
类。
在tag1.3.1.2.2.3里,通过执行ctx.fireChannelRegistered();
又找到了下一个handler,
public ChannelHandlerContext DefaultChannelHandlerContext.fireChannelRegistered() { DefaultChannelHandlerContext next = findContextInbound(MASK_CHANNEL_REGISTERED); next.invoker.invokeChannelRegistered(next); return this; }
这段逻辑和上述基本一样, findContextInbound内部执行时,会跳过ServerBootstrapAcceptor这个handler,最终找到找到tailHandler,并执行channelRegistered()这个方法。就这样,最终完成了整个 pipeline.fireChannelRegistered();
执行。
static final class TailHandler extends ChannelHandlerAdapter {
@Override
public void channelRegistered(ChannelHandlerContext ctx) throws Exception {}
//省略下面的方法
}
下面我们再趁热打铁,回头看看 tag2.1代码的执行逻辑。
public ChannelFuture AbstractChannel.bind(SocketAddress localAddress, ChannelPromise promise) {
return pipeline.bind(localAddress, promise);//tag2.1.1
}
@Override
public ChannelFuture DefaultChannelPipeline.bind(SocketAddress localAddress, ChannelPromise promise) {
return pipeline.bind(localAddress, promise);
}
@Override
public ChannelFuture bind(SocketAddress localAddress, ChannelPromise promise) {
return tail.bind(localAddress, promise); //tag2.1.1.1
}
tag2.1.1.1,执行到这里,发现是tail.bind,而不是head.bind。
@Override
public ChannelFuture bind(final SocketAddress localAddress, final ChannelPromise promise) {
DefaultChannelHandlerContext next = findContextOutbound(MASK_BIND);
next.invoker.invokeBind(next, localAddress, promise);
return promise;
}
@Override public void DefaultChannelHandlerInvokerinvokeBind( final ChannelHandlerContext ctx, final SocketAddress localAddress, final ChannelPromise promise) { if (localAddress == null) { throw new NullPointerException("localAddress"); } validatePromise(ctx, promise, false);
if (executor.inEventLoop()) {
invokeBindNow(ctx, localAddress, promise);
} else {
safeExecuteOutbound(new Runnable() {
@Override
public void run() {
invokeBindNow(ctx, localAddress, promise);
}
}, promise);
}
}
public static void ChannelHandlerInvokerUtil.invokeBindNow(
final ChannelHandlerContext ctx, final SocketAddress localAddress, final ChannelPromise promise) {
try {
ctx.handler().bind(ctx, localAddress, promise);
} catch (Throwable t) {
notifyOutboundHandlerException(t, promise);
}
}
@Override
public void DefaultChannelPipeline.HeadHandler.bind(
ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise)
throws Exception {
unsafe.bind(localAddress, promise);
}
@Override
public final void AbstractChannel.AbstractUnsafe.bind(final SocketAddress localAddress, final ChannelPromise promise) {
if (!ensureOpen(promise)) {
return;
}
// See: https://github.com/netty/netty/issues/576
if (!PlatformDependent.isWindows() && !PlatformDependent.isRoot() &&
Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
localAddress instanceof InetSocketAddress &&
!((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress()) {
// Warn a user about the fact that a non-root user can't receive a
// broadcast packet on *nix if the socket is bound on non-wildcard address.
logger.warn(
"A non-root user can't receive a broadcast packet if the socket " +
"is not bound to a wildcard address; binding to a non-wildcard " +
"address (" + localAddress + ") anyway as requested.");
}
boolean wasActive = isActive();
try {
doBind(localAddress);//tag2.1.1.1.1
} catch (Throwable t) {
promise.setFailure(t);
closeIfClosed();
return;
}
if (!wasActive && isActive()) {
invokeLater(new Runnable() {//tag2.1.1.1.2
@Override
public void run() {
pipeline.fireChannelActive();//tag2.1.1.1.3
}
});
}
promise.setSuccess();//tag2.1.1.1.4
}
在tag2.1.1.1.1里,执行真正的bind端口。
protected void doBind(SocketAddress localAddress) throws Exception {
javaChannel().socket().bind(localAddress, config.getBacklog());
}
在tag2.1.1.1.2里,执行如下方法,`eventLoop().execute(task); `在后续分析。现在暂时忽略。
private void invokeLater(Runnable task) {
// This method is used by outbound operation implementations to trigger an inbound event later.
// They do not trigger an inbound event immediately because an outbound operation might have been
// triggered by another inbound event handler method. If fired immediately, the call stack
// will look like this for example:
//
// handlerA.inboundBufferUpdated() - (1) an inbound handler method closes a connection.
// -> handlerA.ctx.close()
// -> channel.unsafe.close()
// -> handlerA.channelInactive() - (2) another inbound handler method called while in (1) yet
//
// which means the execution of two inbound handler methods of the same handler overlap undesirably.
eventLoop().execute(task);
}
这里需要说一下,虽然先执行了invokeLater
该方法,但是仅仅是把给task加入到队列中,然后等 tag2.1.1.1.4 方法执行后,在下一个循环中再继续执行。
@Override
public ChannelPromise DefaultChannelPromise.setSuccess() {
return setSuccess(null);
}
@Override
public ChannelPromise setSuccess(Void result) {
super.setSuccess(result);
return this;
}
@Override
public Promise<V> setSuccess(V result) {
if (setSuccess0(result)) {// tag2.1.1.1.4.1
notifyListeners();// tag2.1.1.1.4.2
return this;
}
throw new IllegalStateException("complete already: " + this);
}
private boolean setSuccess0(V result) {
if (isDone()) {
return false;
}
synchronized (this) {
// Allow only once.
if (isDone()) {
return false;
}
if (result == null) {
this.result = SUCCESS;// tag2.1.1.1.4.1.1
} else {
this.result = result;
}
if (hasWaiters()) {
notifyAll();
}
}
return true;
}
在 tag2.1.1.1.4.1.1 设置了成功状态,然后该方法返回,继续执行了tag2.1.1.1.4.2方法。由于listeners为 null,所以直接返回。
private void notifyListeners() {
Object listeners = this.listeners;
if (listeners == null) {
return;
}
// 省略XXXXXX
}
此时,程序完成了tag2.1 代码执行,开始继续循环。此时执行 tag2.1.1.1.3里的代码,即执行pipeline.fireChannelActive();
方法。
public ChannelPipeline fireChannelActive() {
head.fireChannelActive();//tag2.1.1.1.3.1
if (channel.config().isAutoRead()) {
channel.read();//tag2.1.1.1.3.2
}
return this;
}
在tag2.1.1.1.3.1里,和上述逻辑一样,最终执行到TailHandler这里。
static final class TailHandler extends ChannelHandlerAdapter {
@Override
public void channelRegistered(ChannelHandlerContext ctx) throws Exception { }
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception { }
//下省略方法
}
在tag2.1.1.1.3.2里,由于channel.config().isAutoRead()默认返回true;
@Override
public ChannelPipeline read() {
tail.read();
return this;
}
@Override
public void DefaultChannelPipeline.HeadHandler.read(ChannelHandlerContext ctx) {
unsafe.beginRead();
}
@Override
public void AbstractChannel.AbstractUnsafe.beginRead() {
if (!isActive()) {
return;
}
try {
doBeginRead();
} catch (final Exception e) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireExceptionCaught(e);
}
});
close(voidPromise());
}
}
此属性 readInterestOp值为16,interestOps & readInterestOp值为0,所以执行了selectionKey.interestOps(interestOps | readInterestOp);
,等同于执行了selectionKey.interestOps(SelectionKey.OP_ACCEPT);
。
protected void AbstractNioChannel.doBeginRead() throws Exception {
if (inputShutdown) {
return;
}
final SelectionKey selectionKey = this.selectionKey;
if (!selectionKey.isValid()) {
return;
}
final int interestOps = selectionKey.interestOps();
if ((interestOps & readInterestOp) == 0) {
selectionKey.interestOps(interestOps | readInterestOp);
}
}
至此,整个DefaultPromise.bind方法执行完毕,下面开始执行DefaultPromise.sync()
。而此时在 tag2.1.1.1.4.1.1 已经将值设为SUCCESS了,所以不需要等待,直接返回。
@Override
public Promise<V> DefaultPromise.sync() throws InterruptedException {
await();
rethrowIfFailed();
return this;
}
@Override
public Promise<V> DefaultPromise.await() throws InterruptedException {
if (isDone()) {
return this;
}
if (Thread.interrupted()) {
throw new InterruptedException(toString());
}
synchronized (this) {
while (!isDone()) {
checkDeadLock();
incWaiters();
try {
wait();
} finally {
decWaiters();
}
}
}
return this;
}
然后系统接着执行了 b.bind(port).sync().channel().closeFuture().sync();
的后半截方法“channel().closeFuture().sync()”方法。而由于closeFuture这个属性的执行结果一直没有赋值,所以被wait了,从而一直处于wait状态。
至此,主线程处于wait状态,并通过子线程无限循环,来完成客户端请求。
小结
通过channel方法设置不同的通道类型,通过childHandler设置SocketChannel的Handler链
bind(port)完成的职责很多,远不同于ServerSocket.bind方法。具体包含:initAndRegister和doBind0。
其中initAndRegister又细化了createChannel() 和init(channel)以及channel.unsafe().register(regFuture)这3个大步骤。
createChannel内部 使用了childGroup,group().next(),ServerSocketChannel.open()这3个属性来创建NioServerSocketChannel实例,并初始化了默认参数DefaultServerSocketChannelConfig和DefaultChannelPipeline对象。DefaultChannelPipeline对象默认包含设置了HeadHandler和TailHandler。然后设置了ch.configureBlocking(false)模式,并将readInterestOp赋值为SelectionKey.OP_ACCEPT。
init(channel方法里面主要涉及到将Parent Channel 和 Child Channel的option和attribute 设值,并将客户端设置的参数覆盖到默认参数中;最后,还将
childHandler(new TelnetServerInitializer())
中设置的handler加入到pipeline()中。channel.unsafe().register(regFuture) 把ServerBootstrapAcceptor这个Handler加入到Pipeline中
doBind0方法内部执行了javaChannel().register(eventLoop().selector, 0, this); 触发了服务端的channelActive() 事件,并设置了 selectionKey.interestOps(SelectionKey.OP_ACCEPT);
参考
blog comments powered by Disqus